
HyperCard IIGS
#1: Corrections to the Script Language Guide 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

HyperCard IIGS
#1: Corrections to the Script Language Guide

Written by: Dan Strnad & Matt Deatherage March 1991

This Technical Note corrects the HyperCard IIGS Script Language Guide from Addison-Wesley.

Appendix A: External Commands and Functions

Page 317: ReturnStat

Developers who worked with the beta version of HyperCard IIGS on Volume V of the Developer
CD (or volume 4 of Developer Essentials) should pay special attention to the use of the
returnStat parameter documented on page 317 of the manual, as this method for using
HyperCard’s error-reporting facilities was not present in beta versions of HyperCard.

Page 318: HyperCard IIGS callbacks

Before describing the callbacks, the Script Language Guide says that the first parameter to each
callback is the parameter block pointer that HyperCard IIGS passes to the XCMD or XFCN. This
is not correct; the XCMD/XFCN parameter block is not passed to callback routines. Each
callback uses only the parameters supplied with its description.

Pages 318–324: Callback descriptions

The numbers listed for each callback are actually decimal numbers, not hexadecimal. There
should not be a “$” in front of each number.

Pages 325–330: Beep, an example XCMD

Although there are “beep” sample XCMDs provided with the HyperCard IIGS Script Language
Guide, they do not necessarily build and execute unmodified. Specifically, depending on your
compiler, there could be a linking problem with the Pascal and C XCMDs as given in the
manual.

XCMDs and XFCNs are code resources, and are therefore subject to the limitations listed in
Apple IIGS Technical Note #86, Risking Resourceful Code. The specific problem here is that
most Pascal and C compilers will create at least three segments: ~globals, ~arrays, and
main. An XCMD or XFCN can only have one segment and the entry point must come first.

Apple II Technical Notes

2 of 4 #1: Corrections to the Script Language Guide

Not only must you link all the object segments into one segment, but you must specifically
extract the entry point and link it first. HyperCard will pass control to the first byte of the loaded
XCMD or XFCN, and therefore this must be the entry point. The samples in Appendix A point
this out in the code.

Actual buildable sample source for the “beep” XCMDs is available in APW and MPW IIGS

format on Volume VI or later of the Developer CD Series (or volume 5 or later of Developer
Essentials). A complete APW C sample is included below.

An APW Sample XCMD: “CBeep”

CBeep.c

/*--

 file CBeep.c

 This XCMD has the following syntax:

 CBeep beep once
 CBeep ## beep n times
 CBeep ? display usage information
 CBeep ! display version information

 Copyright Apple Computer, Inc. 1989-1991
 All Rights Reserved.

--*/

#include <types.h>
#include <MiscTool.h>
#include <GSOS.h>
#include <HyperXCMD.h>

/*
 Globals
*/

int _toolErr;
XCMDPtr gParamPtr;

/*
 Forwards
*/
pascal void CBeep();

/* We place the entry point function in its own segment, so the linker can
 extract it and ensure that it's first in the load file. */

segment "EntrySeg"

/*
 This is the entry point to the program. Make sure this procedure
 comes first in the final OMF resource because this is where HyperTalk
 will be jumping in.

 For a really simple XCMD you could just put the code all in here, but

Developer Technical Support March 1991

HyperCard IIGS
#1: Corrections to the Script Language Guide 3 of 4

 for cleanliness' sake this example calls another routine from here.

*/
pascal void EntryPoint(paramPtr)
XCMDPtr paramPtr;
{
 CBeep(paramPtr);
}

/* All other code & data is placed in the "Main" segment */

segment "Main"

/* The actual CBeep function. Interpret parameters and beep the speaker */

pascal void CBeep(paramPtr)
XCMDPtr paramPtr;
{
 short beepCount;
 short counter;
 Str255 str;

 char *formStr = "\pAnswer \"FORM: CBeep {count}\"";
 char *versionStr = "\pAnswer \"CBeep XCMD v1.0\" & return & \"(c) 1991 Apple
Computer, Inc.\"";

 gParamPtr = paramPtr; /* put in a global for easy access in other funcs */

 if (paramPtr->paramCount > 0) {
 ZeroToPas(*(paramPtr->params[0]), &str);

 beepCount = 0;

 if (str.text[0] == '?') /* test for special characters */
 SendCardMessage(formStr);
 else if (str.text[0] == '!')
 SendCardMessage(versionStr);

 else beepCount = StrToNum(&str); /* not a special - take as # of beeps */
 }
 else beepCount = 1; /* no count, assume one */

 beepCount = (beepCount <= 15) ? beepCount : 15; /* limit 15 beeps */

 for (counter = 0; counter < beepCount; counter++) SysBeep();
}

CBeep.r

/***/
/*
/* CBeep.r
/*
/* Copyright (C) 1991
/* Apple Computer, Inc.
/* All Rights Reserved
/*
/* Rez source for building XCMDs.
/*
/***/

#include "types.rez"

Apple II Technical Notes

4 of 4 #1: Corrections to the Script Language Guide

read $801E (1, convert) "CBeep.omf";

resource rResName ($0001801E) {
 1,
 { 1, "CBeep";
 }
};

Developer Technical Support March 1991

HyperCard IIGS
#1: Corrections to the Script Language Guide 5 of 4

Make file

* --
*
* This makefile will build C XCMDs for HyperTalk
*
* Copyright Apple Computer, Inc. 1991
* All Rights Reserved.
*
* Builds: CBeep
* This makefile depends on a .r file called CBeep.r to act
* as a source for the resource compiler.

compile +t +e CBeep.c keep=CBeep

* --
*
* The compilers will output 3 or more segments: main, containing code;
* and ~globals and ~arrays containing data. This line ensures that
* everything gets put back into the main segment.
*
* In addition, it specifically links the EntryPoint procedure FIRST,
* ahead of any globals or data structures.

* The linker line is very long - make sure you use all of it

linkiigs -x -lseg main CBeep.root(@EntrySeg) CBeep.root(@Main) CBeep.root(@~arrays)
CBeep.root(@~globals) 2/CLib -lib 2/CLib -o CBeep.omf

compile CBeep.r keep=CBeep.rsrc

* now use your favorite resource utility to copy the XCMD from CBeep.rsrc
* into your stack

Further Reference
• HyperCard IIGS Script Language Guide
• Apple IIGS Technical Note #86, Risking Resourceful Code
• HyperCard IIGS Technical Note #2, Known HyperCard Bugs

HyperCard IIGS
#2: Known HyperCard Bugs 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

HyperCard IIGS
#2: Known HyperCard Bugs
Revised by: Matt Deatherage May 1992
Written by: Dan Strnad & Matt Deatherage March 1991

This Technical Note documents known bugs in the released version of HyperCard IIGS that may
affect developers.
Changes since March 1991: Revised to list version 1.1 bugs (sigh) as well as version 1.0 bugs.

HyperCard Externals and Named Resources

HyperCard’s XCMD and XFCN callbacks documented in Appendix A of the HyperCard IIGS
Script Language Guide include callbacks that find named resources. In versions 1.0 and 1.1, these
routines don’t compare the lengths of the resource name strings, which makes HyperCard return
the wrong named resource from time to time.

A more precise description of this problem is in Apple IIGS Technical Note #83, “Resource
Manager Stuff.” Note that HyperCard IIGS does not use the Resource Manager’s named resource
routines, but the code in the Resource Manager suffers from the same problem the HyperCard code
has.

Previous bugs fixed

The two bugs previously listed in this Note—improper handling of desk accessories and crashing
when using objects or properties of different stacks to externals—are both fixed in HyperCard IIGS
version 1.1.

Further Reference
• HyperCard IIGS Script Language Guide
• HyperCard IIGS standard documentation (included with HyperCard IIGS)

Hypercard IIGS

#3: Tuning Sampled Sounds 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

HyperCard IIGS
#3: Pitching Sampled Sounds

Written by: Mark Cecys & Matt Deatherage March 1991

This Technical Note describes the “relative pitch” field used in sound resources played by
HyperCard (and sound scraps that HyperCard doesn’t use)—what it does and what to put in it.

What is this relative pitch thing?

There are basically two ways to use a sound sample, in HyperCard or anywhere else: as a
sample of a wave of definite pitch, or as a miniature “tape recording” of some sound that is not
intended to be used as a sample of indefinite pitch.

Definite Pitch

To play a sample at the correct pitch, HyperCard assumes two things about the sample: it was
sampled at a rate of 26.32 KHz, and the associated wave was playing a pitch of 261.63 Hz, when
it was sampled.

In the real world, where most of us live, this is not very practical. To help compensate for
reality, the sample sound format includes a “relative pitch” field, which can tell HyperCard (or
anyone else playing the sound) how to compensate for the difference in pitch between the
sample’s actual pitch and a pitch of 261.63 Hz.

Follow these steps to calculate the relative pitch parameter for a given sampled sound resource.
If the wave is of definite pitch, you must know the frequency of the source wave and the
sampling rate for the sample in question.

1. Calculate the difference ratio r. In the equation below, Fw is the frequency of the
sample (in Hz) and Fs is the sampling rate for the sample.

r =
261.63
Fw

Fs
26,320

2. Extract an offset to the pitch:

offset = 3072 log2(r)

Apple II Technical Notes

2 of 2 #3: Tuning Sampled Sounds

(Remember that you can substitute
ln(r)
ln(2) if your calculator doesn’t provide the log

in base 2.)

Developer Technical Support March 1991

Hypercard IIGS

#3: Tuning Sampled Sounds 3 of 2

3. If offset is negative, make it positive and set bit 15 to tell sound players to tlower
the pitch instead of raise it. If offset is negative:

relative = offset + $8000

If offset is positive:

relative = offset

That’s all. Store the value of tuning in the sampled sound for the “relative pitch” field and
HyperCard will take care of the rest.

Indefinite pitch

Sounds which are not samples of definite pitch (for example, a thunder clap or the sound of your
mother saying "hello") should not need to be made to match pitch. Only sounds produced using
optional parameters of HyperCard's Play command need to go through the same process outlined
for “Definite pitch”. In these cases, however, you don’t need to worry about the frequency of the
sample. Instead of using the equation provided in step 1 above, use this instead:

r =
Fs

26,320

(or just use 261.63 for Fw.) Take the value of r and use it for steps two and three above.

A HyperTalk sample

The following simple button script will calculate the correct value of relativefor you, given the
other values in card fields named Fw, Fs and card fields named offset and relativeto use as
containers:

on mouseUp
lock screen
set numberFormat to "0"
put the value of card field Fs * 261.63 into r
put the value of card field Fw into denominator -- the bottom of the fraction
multiply denominator by 26320
divide r by denominator

put log2(r) into card field offset
multiply card field offset by 3072

if card field offset <0 then
put abs(the value of card field offset) into card field tuning
add 32768 to card field relative

end if

unlock screen
end mouseUp

Apple II Technical Notes

4 of 2 #3: Tuning Sampled Sounds

Further Reference
• HyperCard IIGS Script Language Guide
• Apple IIGS Technical Note #76, Miscellaneous Resource Formats
• Apple IIGS Technical Note #99, Supplemental Scrap Types

	1. Corrections to the Script Language Guide
	2. Known HyperCard Bugs
	3. Pitching Sampled Sounds

